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Abstract 

It is shown that an electron density distribution of 
the form pk = exp [~fj(rk)xj] has maximum entropy 
under the constraint that the expected values of a set 
of functions, fj(r), are constant. For a Fourier map 
the functions fj(r) are the magnitudes of the structure 
factors for a set of reflections hj including F(000). 
The values of the parameters xj for which 
[(exp (2,n-ihj .r))] = [Fobs(h j)[ for an arbitrarily large set 
of reflections may be found by an iterative algorithm 
in which xi+~=xi+HT~,~,  where the matrix H is 
positive definite. Because the distribution p(r) is 
everywhere positive, if non-negativity of electron 
density is sufficient information to determine a unique 
structure by direct methods, it follows that the 
maximum entropy procedure must lead to the same 
unique structure. Maximum entropy is thus an 
efficient way of expressing the phase implications of 
a large set of structure amplitudes. 

Introduction 

Various workers (Collins, 1982; Wiikins, Varghese & 
Lehmann, 1983; Bricogne, 1984) have shown that the 
principle of maximum entropy (Shannon, 1948; 
Jaynes, 1979) can provide a powerful formalism for 
the optimum use of the structure information con- 
tained in the measured values of X-ray diffraction 
amplitudes. These workers have proposed procedures 
for finding maximum entropy distributions that are 
consistent with the observed data, procedures that 
generally involve a many-parameter optimization that 
incorporates the data by use of Lagrangian multi- 
pliers. This technique becomes cumbersome when 
applied to large-molecule structures, leading 
Woolfson (1987) to observe that 'entropy maximiz- 
ation is adding nothing new to the crystallographic 
scene, and, since it involves a great deal of effort, 
perhaps nothing useful'. Prince, Sj61in & Alenljung 
(1988; hereinafter referred to as PSA), however, have 
shown that a maximum entropy distribution can be 
found by expressing the maximum entropy condition 
in terms of a small number of parameters and varying 
those parameters to find a distribution that satisfies 
the constraints. They applied this method to a model 
in which the only constraints were on the total number 
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of electrons in the unit cell and the expected value 
of a truncated Fourier series using a set of phases 
previously determined by other means. This paper 
extends that method to determine a distribution that 
has maximum entropy and simultaneously satisfies 
the amplitudes of an arbitrarily large set of reflections. 

Mathematical analysis 

In the entropy maximization procedure we divide a 
unit cell into a large number of subunits, commonly 
called 'pixels', and seek to maximize the quantity 

N 

S = -  ~ Pk In (Pk/P'k), (1)  
k=l 

subject to certain constraints that require that the 
Fourier transform of the density distribution be in 
agreement with the observed diffraction data. Pk rep- 
resents the mean density in the kth pixel, and p~ is 
the density in that pixel in a distribution inferred 
from prior information. We shall discuss below the 
prior distribution in terms of a sequential approach 
to a complete model, but we shall assume initially 
that it is uniform, so that the terms in (1) reduce to 
Pk In Pk. The constraints are that the sum of ( V~ N)pk 
(where V is the volume of the unit cell) over the unit 
cell be equal to F(000), and that the expected values 
of one or more other Fourier coefficients, or sums of 
terms in a truncated series, be constant. The case 
considered in PSA is one in which there is a single 
constraint on the expected value of a truncated series. 

In order to maximize the entropy expression in (1) 
subject to n constraints, it is necessary to partition 
the N-dimensional parameter space into an n- 
dimensional subspace reachable by a linear combina- 
tion of the constraint functions and an ( N - n ) -  
dimensional 'null '  space orthogonal to it. This parti- 
tion may be made efficiently by use of the variable 
reduction method (Gill, Murray & Wright, 1981) as 
follows. Define a constraint matrix C by Cjk = 
ofj(p)/Opk, where fj(p) is the j th  constraint function. 
If no two constraint functions are redundant, C has 
full-row rank (Stewart, 1973) and can be partitioned 
into a nonsingular (n x n) matrix V and an n × ( N - n ) 
matrix U. The rows of the matrix [-(V-~U) T, I], where 
I is the identity matrix of order ( N - n ) ,  are then 
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orthogonal to the rows of C and form a sufficient 
basis set for the null space. The condition for 
maximum entropy with constant (f~(p)) for all j is 
that the partial derivatives of S with respect to scalar 
multiples of each of the null-space basis vectors van- 
ish individually. This matrix has a number of useful 
properties. (A simple example applying this pro- 
cedure is worked out in PSA.) Each row has no more 
than n + 1 nonzero elements, all except one of which 
fall in the same set of n columns, while that one 
always has the value + 1. Furthermore, one row of C 
serves to keep the sum of the numbers of electrons 
in all pixels equal to F(000), which means that all of 
its elements also have the value +1. Because each 
row of [ - (V-~U) r, I] must be orthogonal to this, the 
sum of all elements in a row must be zero, and the 
sum of n elements must therefore be -1 .  Given that 
aS/apk = --(In Pk + 1), it follows that the condition for 
maximum entropy is satisfied when 

In Pk = ~ Zkl In Pl, (2) 
l = l  

where Z = (V-1C) r, and Pl are the densities in the n 
pixels corresponding to the columns of V. Thus the 
maximum entropy condition provides a unique 
specification of the densities in all N pixels in terms 
of the densities in only n of them. Note also that (2) 
is unaffected by the addition of a constant to each 
side, so that the maximum entropy condition is 
independent of any linear rescaling of the entire map. 

Most procedures previously proposed for the deter- 
mination of a maximum entropy distribution have 
involved a search within the null space starting at a 
point where the constraints are satisfied, a feasible 
point, for a point at which the gradient of the entropy 
function vanishes. This requires the use of a fitting 
algorithm in a space that may be of extremely high 
dimension, with the additional problem that 
safeguards must be used to prevent the density in any 
pixel from being negative at any point in the search. 
PSA showed that it is much more efficient computa- 
tionally to reverse the process and to search among 
points satisfying (2) for a feasible point. They showed 
that the function 

E(p)  = ( ~  IF(hj)[ cos ( 2 ~ - h j . r - ~ o j ) ) ( 3 )  
j = !  

is a well behaved function of the single variable 
x=ln(Pmax/Pmin), where flmax and Pmin are the 
maximum and minimum densities in the map, respec- 
tively, and that the equation 

E ( p ) =  ~. IF(hj)l 2 (4) 
j=l 

can be easily solved using standard numerical 
methods. This procedure is known in the optimization 
literature as the dual method (Gill, Murray & Wright, 

1981; Luenberger, 1984). It is particularly useful when 
the conditions for a stationary point in the null space 
can be written in closed form, as in (2). 

A maximum entropy density distribution with a 
constrained expected value of a truncated Fourier 
series like that in (3) reproduces many features of the 
truncated series. For example, it has maxima, minima 
and saddle points in the same places as the truncated 
series, but the peaks are sharper and the valleys are 
flatter. Its Fourier transform, however, has different 
values for the amplitudes of the individual terms in 
the series and nonzero values for the amplitudes and 
values for the phases of the terms that were not 
included in the series. The latter feature may be used 
to extend phases to higher resolution, the calculated 
phases being used with the observed amplitudes to 
compute a higher-resolution map. It is of interest, 
however, to find a density map that is in exact agree- 
ment with the amplitudes of all observed reflections, 
or at least a large set of the strongest ones. To accom- 
plish this, we define an additional set of constraint 
functions of the form f j (p )=  (cos (2"rrhj .r-q~j), and 
solve the system of nonlinear equations f j ( p ) =  
[Fobs(hj)]. If one sets the scale to give the correct value 
of F(000), (2) is equivalent to 

exp[l~ Zkllnpl ] 
pk:[NF(OOO)/V] , (5) 

~" e x p [ ~  Z, , , l lnpl]  
m = l  l = l  

and fj(p) is then 
N 

f j (P )=  E pkCOS(27rhj.rk--%). 
k = l  

(6) 

To solve, by Newton's method (Prince, 1982), the 
system of equations fj(p)--IFobs(hj)] we require the 
matrix M whose elements are Mjt--0fj(p)/0Ai, where 
Ai = In Pt- These are given by 

N 

O£(P)/OAI = E [~£(P)/~Pk](OPk/OAI), ( 7 )  
k = l  

but ofj(p)/apk = Cjk, and Opk/aAl = ZklPk, SO that M 
is given by 

M :  CPZ, (8) 

where P is a diagonal matrix such that Pkk = Pk. 
M is a general matrix with no simplifying symmetry 

properties, and it requires selection of a set of columns 
of C to form a nonsingular matrix V. Note, however, 
that Z = c r ( v - 1 )  r, and, without loss of generality, a 
feasible point satisfying the maximum entropy condi- 
tion can be expressed, rather than in terms of a subset 
of In Pk, in terms of the linearly transformed variable 
x = (V-1)rAv. The Newtonian solution of the system 
of equations then becomes 

X i +  1 - - X  i = H~-1Ai, (9) 
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where H = C P C  r, and (A,)j = Fobs(hj)l-£[p(x,)]. H 
is symmetric, and, because C has full-row rank and 
Pkk > 0 for all k, is in fact positive definite. Thus the 
solution of the maximum entropy problem closely 
resembles the least-squares problem, except that it is 
P, which plays the role of a weight matrix, that is 
refined. 

An application example 

To illustrate how this method may be used in crystal- 
lography, consider a simple one-dimensional 
example based on the projection of the diamond 
structure on a [ 111] axis. The dashed curve in Fig. 1 
is a plot of the truncated series 

p(y) = F(0)  + 2F(1)  cos 2try + 2F(3) cos 6try 

+ 2F(4)  cos 8try, 

where F (0 ) - -1 ,  F (1 )=0 -68 ,  F ( 3 ) - - - 0 - 6 5 ,  and 
F ( 4 ) = - 0 . 9 0 .  It has several regions of negative 
density, as well as some extra bumps in addition to 
the principal ones at y = 0 . 1 2 5  and y=0 .875 .  The 
map was divided into 200 pixels. The constraint 
matrix has four rows: the first row is all ones to 
maintain constant normalization; the second row is 
an image of p(y) with the minimum density set to 
zero and scaled so that the maximum density is one; 
the third and fourth rows are the values of cos 2zry 
and cos 8~-y in the middle of each pixel. (Note that 
the three cosine terms cannot all be included 
individually, or the second row would be a linear 
combination of the others, leading to rank deficiency.) 
Because the first row of C is all ones, exp (x~) is a 
linear scale factor that can be adjusted to the proper 
normalization without affecting the shape of the 
curve. The procedure of (9) was applied, starting with 

(D 
c5 

O 
¢O 

O 

"~ !! 

o l  !/ 

l 

' / L  
l A X  !! 

X I \ i 

\ i x /  \ / \ . ,  

o.2~ o .~o  o.7~ 
y 

Fig. 1. Plot (dashed curve) of the Fourier series p(y)= 
1 + 1.36 cos 2Try - 1-30 cos 6Try - 1.80 cos 8try and (solid curve) 
an entropy-maximized distribution having the same coefficients 
for corresponding terms in its Fourier expansion. 

Table 1. Coefficients of the first 13 terms in the Fourier 
expansion of the entropy-maximized curve in Fig. 1 

h F(h) h F(h) 
0 1.000 7 0-504 
1 0-680 8 0-657 
2 -0.003 9 0.396 
3 -0-650 10 -0.012 
4 -0-900 11 -0.323 
5 -0.576 12 -0.395 
6 0.009 

x~ = In (0. lpmax), where/gma x is the maximum density 
in the initial map, x2= ln  (10), X 3 : X 4 : 0 .  It con- 
verged in four iterations to x~ = - 6 . 0 2 4 ,  x2 = 3.821, 
x3 = 1.295, x4 = 3.719, giving the solid curve in Fig. 1. 
The coefficients of the first few terms in the Fourier 
expansion of this curve are given in Table 1. The 
coefficients corresponding to the terms of the initial 
truncated series match exactly. 

Discussion 

In this example when the fitting procedure was 
divided into two stages, with a preliminary step using 
the soft constraint of PSA followed by adjustment of 
all parameters, convergence was no more rapid than 
it was when adjustment of all parameters started with 
the crude approximation. Because it would be expec- 
ted that more information included in determining 
the starting point for the iterative solution would lead 
to a closer approximation, this may be a feature of 
this simple model that does not carry over to more 
complex problems. Note that the sequential process 
corresponds to 

pk = P'k exp [ ~ fj(rk)AXj], (10a) 
j = l  

where 

P'k = {[ NF(OOO)/ V] /  ~=l eXP [m~= fm(rt)X'ml} 

xeXP[m~=f,,(rk)x'], (10b) 

and x' is the set of parameters found in the previous 
step. p' thus plays the role of the 'prior'  distribution 
that appears in (1). It makes no difference, mathemati- 
cally at least, whether the fitting is performed in one 
step starting with a uniform prior distribution or is 
performed in several steps with increasingly tight 
constraints. This is in accord with the consistency 
conditions that maximum entropy has been shown to 
satisfy (Shore & Johnson, 1980; Livesey & Skilling, 
1985). It seems likely, however, that the sequential 
procedure would be better behaved in practice, par- 
ticularly when phase extension must be included. 

By using this procedure it is possible to find a vector 
of parameters, x, that will make [Fobs(hi)[=If(p)[, 
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where fj(p) is defined in (6), to an arbitrary precision. 
Real data, however, are subject to a statistical uncer- 
tainty, and it is pointless to demand agreement that 
is more precise than this uncertainty. Previously 
described procedures (e.g. Livesey & Skilling, 1985) 
for finding a maximum entropy distribution have 
defined the set of feasible points by a constraint of 
the form Y'.{[ Fobs(hi) - fj(p) ]/%}2= m, where % is 
the standard deviation of Fobs(hi) and the sum is 
over m reflections. This constraint contains nothing 
that requires the quantities within the braces to have 
a distribution that in any way resembles a normal 
distribution, and, further, has resulted in problems 
in computation. By contrast, the lack of precision in 
the data is relevant to the procedure described here 
only in the definition of the stopping rule. Refinement 
can continue until [IFobs(bj)l-IX(o)l]2/&< 1 for all j. 

It can be shown (Luenberger, 1984) that any set of 
starting phases will lead to a unique maximum 
entropy map. As Bricogne (1984) has shown, 
however, different sets of starting phases may lead to 
different maps, each of which is equally consistent 
with the data. In these circumstances the total entropy 
of the map provides a criterion for choosing among 
different possible sets of starting phases. 

The entropy maximization procedure described 
here is a means of finding an everywhere-positive 
electron distribution for which the amplitude of the 
structure factor, I(exp (27rih.r)], is equal to  [Fobs(h) I 
for an arbitrarily large set of reflections. It does not, 
however, make any use of the fact that a crystal is 
composed of atoms that have definite well known 
physical and chemical properties. It is thus a tool for 
obtaining a map into which an atomic model may be 
fitted, with subsequent refinement by least-squares 
methods. If non-negativity of electron density is a 
sufficient condition to determine a unique atomic 
structure by direct methods (Woolfson, 1987, and 
references therein), it follows logically that entropy 
maximization, which is a stronger condition, will find 

the same atomic structure. A characteristic of the 
maximum entropy distribution is that it maximizes 
the minimum density in the unit cell, thereby minimiz- 
ing the probability that some reflection in the 
unmeasurable region of reciprocal space will have an 
amplitude for which there is no phase that will not 
cause the density at some point to be negative. 
Maximum entropy is not a necessary condition for 
an acceptable structure, so structures whose entropies 
are far from the global maximum cannot be ruled 
out. Nevertheless, it is at least a plausible conjecture 
that, in a centrosymmetric structure, the sign combi- 
nation for the strongest reflections that has the highest 
entropy is likely to be the correct one, and that, in a 
non-centrosymmetric structure, the correct set of 
phases will give a distribution that has an entropy 
close to the maximum. Maximum entropy is an 
efficient way to express the mutual phase implications 
of a large set of amplitudes simultaneously. 
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Abstract 

A two-step procedure is presented for the estimation 
of triplet invariants from multi-wavelength data. In 
the first step wavelength-independent structure-factor 
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magnitudes of both the total structure and the light- 
atom substructure, together with associated structure- 
factor phase differences, are calculated explicitly via 
a modified Singh & Ramaseshan [Acta Cryst. (1968), 
B24, 35-40] procedure. In the second step these 
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